You Can Irradiate That??
New and Little Known Uses for Radiation

Ira Gordon, DVM
Diplomate American College Veterinary Radiology- Radiation Oncology
Overview

• Radiation Background
 • What is radiation
 • Types of radiation

• Radiation Innovations
 • What’s new

• Courses of Radiation
 • Full-course
 • Hypofractionated
 • Stereotactic

• Common Applications

• New and Novel Uses of Radiation
What is radiation?

- Electromagnetic (Photons; x-rays and gamma rays)
 - Properties of both particles and waves
 - Wavelength inversely proportional to frequency/energy
- Particles
 - Electron
 - Proton
 - Neutron
How do you make radiation?
What’s new in radiation therapy
As of September 19, 2015, the ACVR membership includes 97 Diplomates in Radiation Oncology and 19 Residents-in-Training in Radiation Oncology.
What are common “courses” of radiation

- **Full-course Protocols**
 - Aka “Definitive” or “curative-intent”
 - ~15-20 fractions
 - Daily Mon-Fri
 - Approximately 3.5-4 weeks

- **Hypofractionated Protocols**
 - Aka “Short-course” or “palliative”
 - 2-6 fractions
 - Daily or weekly
Time, Dose, and Fractionation
Full-Course Radiation

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
</tr>
<tr>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
</tr>
<tr>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
</tr>
<tr>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
<td>2.75 Gy</td>
</tr>
</tbody>
</table>

49.5 Gy Total
Hypofractionated Radiation

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8 Gy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32 Gy Total
Accelerated Hypofractionated Radiation

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Gy</td>
<td>4 Gy</td>
<td>4 Gy</td>
<td>4 Gy</td>
<td>4 Gy</td>
</tr>
</tbody>
</table>

20 Gy Total
Stereotactic Radiation Therapy (SRT)

- Large dose / fraction in 1-5 fractions
- **Treatment planning:**
 - Assign maximum and minimum dose to tumor volume and normal structures
- Multileaf collimators or stereotactic cones “sculpt” radiation dose to tumor volume
- Goal to deliver outcomes that compare to full-course therapy in just a few treatments
Precision Conformal High-Dose Radiation (aka SRT/SRS)

Conventional radiation
• Relies on fractionation to minimize damage to surrounding normal tissues
• 12-20 doses for definitive-intent or ~4 larger doses given over time for palliative-intent
• Wide margins around gross tumors to account for invasive microscopic disease and setup/delivery uncertainties

Stereotactic radiation
• Relies on extreme accuracy and steep dose gradients to spare surrounding normal tissues
• Few large doses within one week for definitive-intent treatment course
• Narrow margins around gross tumors to account for invasive microscopic disease and setup/delivery uncertainties
Stereotactic Radiation

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8-12 Gy</td>
<td>8-12 Gy</td>
<td>8-12 Gy</td>
</tr>
</tbody>
</table>

24-36 Gy Total
Tumors “commonly” treated with radiation

- Soft Tissue Sarcomas
 - Microscopic – Full course
 - 95% 1 year control, 85% 3-5 year control
 - Macroscopic –
 - Full course – 50% 1 year
 - Hypofractionated – 50% 5 month
 - SRT- Not reported yet in dogs, 50% 8 months in cats
Tumors “commonly” treated with radiation

- Mast cell tumors
 - Microscopic – Full course – 90% 3-5 year control
 - Treat lymph node for high risk MCT – median DFI 3 years
 - Macroscopic – Full course, Hypofractionated +/- stereotactic
Tumors “commonly” treated with radiation

- Nasal tumors
 - Medical treatment – 2-5 month ST
 - Full course – 1-1.5 year ST
 - Hypofractionated- 5-10 month ST
 - SRT – 1+ year
Tumors “commonly” treated with radiation

- Oral tumors (Melanoma, SCC, FSA)
 - Stereotactic, Full course, hypofractionated
Tumors “commonly” treated with radiation

- Oral tumors (Melanoma)
 - Hypofractionated
 - 85% Response rate
 - 7-12 month ST
 - Consider PLNI
 - Adjuvant immunotherapy
Tumors “commonly” treated with radiation

- Invasive Thyroid tumors
 - Full course
 - Slow to respond (max 6-12+ months)
 - 50% PFS 2-3+ years
 - Hypofractionated
 - >1 year average tumor control
Tumors “commonly” treated with radiation

- **Brain Tumors**
 - Surgery vs radiation therapy, vs surgery + radiation therapy
 - Feline meningioma – Surgery often curative
 - Canine meningioma
 - Surgery may result in more rapid clinical improvement
 - Radiation may result in longer PFS
 - Unclear if surgery + radiation improves PFS
 - Canine glioma – Radiation often preferred over surgery
 - Pituitary tumors
 - Surgery is risky and performed at very few places
 - Radiation therapy associated with 2.5-3.5+ year MST
- **Full course versus stereotactic radiation – most recent studies**
 - SRT – 13 month median survival time (16 month Disease Specific Survival)
 - Full course conformal – 19 month median survival time (30 month Disease Specific Survival)
Tumors “commonly” treated with radiation

- Brain Tumors
 - Microscopic – Full course
 - Macroscopic – Stereotactic or full course
Tumors “commonly” treated with radiation

- Brain Tumors
 - Why do we fail?
 - Viable tumor cells outside of the target region (most likely with SRT)
 - Radiation resistant tumor cells within the target volume (most likely with fractionated radiation therapy)
 - What can we try?
 - Can we do both?
 - A full-course of radiation therapy with an integrated stereotactic boost
Is there anything that isn’t a candidate for radiation therapy?

- Systemically advanced/metastatic tumors
- Cardiac tumors
- Lung tumors?
- GI tumors
 - Intestinal
 - Pancreatic
 - Hepatic
Did You Know?

- Bone tumors (osteosarcoma) can be effectively treated without amputation?
 - Palliative radiation therapy
Canine OSA

“Palliative” Radiation Therapy
- Weekly x 4, daily x 2
- Well tolerated, outpatient, less expensive
- Good pain control in 75-90% of cases
- Median duration = 2-4 months
 - May be improved with chemo or bisphosphonates
- Can be repeated
Stereotactic Radiation Therapy: Preliminary Outcomes

- Median Survival Time = 300 days (n=50)
- Promising local tumor control
- Minimal, well-tolerated skin side effects
- Case selection reduces risk of fracture
 - Reported to be ~30%
Did you know?

- Epulides are effectively treated with radiation therapy
- Slow and/or incomplete regressions
- 80% 3-year PFS
Genitourinary tumors have improved outcomes with radiation therapy

- Full course IMRT for GU carcinomas
 - Overall survival – 22 months
 - Event free survival – 10 months
- SRT – an option for prostatic but not bladder tumors
- Hypofractionated RT
 - Can relieve urinary obstruction in most dogs
You can irradiate lipomas!

- **Infiltrative lipomas**
 - Rare variant characterized by aggressive local tissue invasion and frequent recurrence after surgical excision

- **Radiation therapy**
 - Effective post-operatively or as primary mode of therapy
 - 80% PFS at 3 years post-RT
Plasma cell tumors
Anal Sac Carcinomas

- Multimodal therapy results in best reported outcomes
- Surgical excision of primary mass alone
 - 6-10 months
- Excision of primary mass and SL LNs
 - 12-18 months
- Excision of primary mass plus chemo
 - 12-18 months
- Excision of mass plus RT and chemo
 - 30 months
 - Primary tumor and lymph nodes
Thymoma

- **Canine/Feline**
 - 75% response rate to RT for non-resectable thymoma
 - MST – dogs=8 months, cats=24 months

- **Rabbit**
 - >50% perioperative mortality with surgery
 - 10% peri-readiation mortality
 - MST ~2 years
Hemangiosarcoma

- Radiation therapy for non-splenic hemangiosarcoma
 - 70% response rate
 - MST 3 months (due to metastatic disease)
 - Usually treated with hypofractionated RT
Lymphoma!

- Radiation is the treatment of choice for solitary extra-nodal lymphoma
- Radiation is effective at palliating relapsed multicentric lymphoma sites but remissions are brief unless additional chemo is effective
- “Half-body” radiation in treatment of canine lymphoma improves long-term cure rates in several studies when included in induction treatment protocol
 - May improve outcomes in rescue setting if lymphoma can be driven into remission

Sequential Low-Dose Rate Half-Body Irradiation and Chemotherapy for the Treatment of Canine Multicentric Lymphoma

Lymphoma!

- GI lymphoma
 - >90% response rate in RESCUE setting
 - Median survival of 7 months post RT (12 months overall from diagnosis)

Dorothy L Parshley DVM, PhD1,2,3*, Susan M LaRue DVM, PhD, DACVS, DACVR (Radiation Oncology)4, Barbara Kitchell DVM, PhD, DACVIM (Oncology and Internal Medicine)1,2, David Heller DVM, DACVIM (Oncology)1,5, Ravinder S Dhaliwal DVM, MS, DACVIM, DACVP1,6
Other uncommon indications for radiation therapy

- Histiocytic sarcoma
 - Estimate >75-80% response rate
 - Variable duration, always consider chemotherapy

- Heart base tumors (chemodectoma)
 - High rates of response, frequently durable for >1 year
Tumors that were previously irradiated

- Response rates for second RT courses are similar to original response rate
 - 89% for nasal tumors
 - 75% for bone tumors
- Response rates usually shorter with second course
 - 9 versus 17 months for nasal tumors
 - 1-2 months versus 3-4 months for bone tumors and palliative RT
- Rule of thumb
 - Reasonable to expect a response of about 50% of initial response
Radiation Treats Benign Diseases
Radiation Treats Benign Diseases (Humans)

- Used extensively abroad (primarily in Germany)
 - >35,000 patients with benign disease per year treated with RT
 - 2/3 are inflammatory or degenerative osteoarticular diseases

- Reasons for lack of use domestically
 - Fear of radiation induced tumors
 - Fear of litigation
 - Lack of established/optimal protocols
Fear of radiation induced tumors

- Risk of carcinogenesis
 - Highly complex
 - Presumed risk is extrapolated from effects at high or moderate doses with calculations based on the most conservative assumptions
 - Atomic bomb explosions (Hiroshima and Nagasaki) and nuclear plant accidents (Chernobyl)
 - RT for ankylosing spondylitis, repeated fluoro for tuberculosis
 - Biggest risk factor is age
 - People < 30 years have highest risk and >60 year have lowest risk
Fear of radiation induced tumors

- Epidemiologic studies with low doses of radiation have overall not detected significant increases in cancer risk
 - May be too weak to appear statistically significant in studies to-date
- Populations with increased natural radiation exposure
 - In some cases, have decreased cancer risk and fewer cellular chromosomal aberrations
- Nuclear plant workers exposed to low-dose radiation
 - Inconsistent results may be due to lack of statistical power
What is the risk of carcinogenesis with low-dose radiation?

- Could be nonexistent
- Probably too weak to appear statistically significant
Anti-inflammatory effects of low-dose radiotherapy

- Low dose RT has a strong anti-inflammatory effect
- Demonstrated efficacy in people for
 - Degenerative bone and inflammatory disease
 - Osteoarthritis
 - Bone spurs
Mechanisms of Anti-inflammatory effects of low-dose radiotherapy

- Decreased adhesion of neutrophils to endothelial cells
- Induction of apoptosis of inflammatory cells
- Decreased expression of adhesion molecules
- Decreased nitric oxide and reactive oxygen species
- Increased expression of anti-inflammatory cytokines
- Decreased AKT expression in neutrophils
- Increased AP-1 activity
- Activation of NF-kappa B

<table>
<thead>
<tr>
<th>Tab. 1</th>
<th>Summary of radiobiological mechanisms of LD-RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Dose tested</td>
</tr>
<tr>
<td>Immunoglobulin superfamily</td>
<td>No change in expression of ICAM-1 or VCAM-1 (dose 0.1–1 Gy) [21, 24, 25, 31]</td>
</tr>
<tr>
<td>Selectins</td>
<td>↓ expression L-selectin (minimum dose of 0.3 Gy), no change in E-selectin or P-selectin [31]</td>
</tr>
<tr>
<td></td>
<td>↓ expression E-selectin (minimum dose of 0.7 Gy) [25, 53]</td>
</tr>
<tr>
<td></td>
<td>↑ E-selectin (0.5 Gy) [21]</td>
</tr>
<tr>
<td>iNOS</td>
<td>↓ iNOS (≤1.25 Gy) [24, 26]</td>
</tr>
<tr>
<td>ROS</td>
<td>↓ ROS (0.3–0.6 Gy) [58]</td>
</tr>
<tr>
<td>NF-κB</td>
<td>↑ NF-κB (maximum of 0.5 Gy), ↓ 0.6 Gy 0.8 Gy and ↑ again at 1–3 Gy [54]</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>↑ TGF-β1 (maximum of 0.5 Gy) [54]</td>
</tr>
<tr>
<td>AP-1</td>
<td>↑ AP-1 (maximum of 0.3 Gy), ↓ 0.5–1 Gy and ↑ again at 3 Gy [52]</td>
</tr>
</tbody>
</table>

ICAM-1 Intercellular adhesion molecule 1, VCAM-1 vascular cellular adhesion molecule 1, iNOS inducible NO-synthetase enzyme, ROS reactive oxygen species, NF-κB nuclear factor kappa B, TGF-β1 transforming growth factor β1, AP-1 activator protein 1
<table>
<thead>
<tr>
<th>Author</th>
<th>Experimental model</th>
<th>RT dose/time</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Pannewitz</td>
<td>Rabbit knee arthritis (electrocoagulation)</td>
<td>1 Gy</td>
<td>↓ inflammation symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Different</td>
<td></td>
</tr>
<tr>
<td>Glenn</td>
<td>Healthy rabbit leg</td>
<td>0.1–10 Gy (90–400 KV)</td>
<td>↑ phagocytic index at 1 Gy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 h–2 weeks before study</td>
<td>↓ phagocytic index at doses >1 Gy</td>
</tr>
<tr>
<td>Budras</td>
<td>Rabbit knee arthritis (intraarticular granugoenol</td>
<td>5 fractions of 1.5 Gy</td>
<td>↓ inflammation (↓ cellular proliferation at sinovial membrane; ↓ synovial fluid)</td>
</tr>
<tr>
<td></td>
<td>injection)</td>
<td>Immediately, 6 or 12 weeks after injection</td>
<td></td>
</tr>
<tr>
<td>Trott</td>
<td>Rat knee arthritis (intraarticular Mycobacterium TBC</td>
<td>5 Gy</td>
<td>↓ inflammation (4 fractions of 1 Gy (↓ articular swelling, ↓ destruction of cartilage and bone)</td>
</tr>
<tr>
<td></td>
<td>injection)</td>
<td>4 fractions of 1 Gy (daily)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 h after injection</td>
<td></td>
</tr>
<tr>
<td>Fischer</td>
<td>Rabbit knee arthritis (Intraarticular injection of</td>
<td>5 fractions of 1 Gy (daily)</td>
<td>↓ inflammation (also histological)</td>
</tr>
<tr>
<td></td>
<td>papain)</td>
<td>1 day post-injection</td>
<td>(↓ articular diameter, ↓ synovial membrane thickness, ↓ synovial membrane cells)</td>
</tr>
<tr>
<td>Hildebrandt</td>
<td>Mice granulomatous disease</td>
<td>2 Gy day 2</td>
<td>↓ inflammation (also histological)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Gy day 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 fractions of 0.5 Gy from day 2 to day 6</td>
<td></td>
</tr>
<tr>
<td>Hildebrandt</td>
<td>Rat knee arthritis (Mycobacterium TBC)</td>
<td>5 fractions of 1 Gy</td>
<td>↓ inflammation (also histological)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 fractions of 0.5 Gy</td>
<td>↓ iNOS and ↑ HO-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15–19 days post-induction</td>
<td></td>
</tr>
<tr>
<td>Liebmann</td>
<td>Rat leg arthritis (Mycobacterium TBC)</td>
<td>5 fractions of 1 Gy</td>
<td>↓ inflammation (more effective 5 fractions of 1 Gy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 fractions of 0.5 Gy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10–26 days post-induction</td>
<td></td>
</tr>
<tr>
<td>Schaeue</td>
<td>Mice superficial dorsal air cell model</td>
<td>0–5 Gy</td>
<td>↓ iNOS, ↑ HSP-70 and ↑ HO-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 h after induction</td>
<td></td>
</tr>
<tr>
<td>Arenas</td>
<td>Mice systemic inflammation model with lipopolysaccharide</td>
<td>0.1, 0.3, 0.6 Gy</td>
<td>↓ leukocyte adhesion</td>
</tr>
<tr>
<td></td>
<td>(LPS)</td>
<td>5, 24, 48, 72 h</td>
<td>ICAM-1 not modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↑ TGF-β1</td>
</tr>
</tbody>
</table>

iNOS: inducible NO-synthetase enzyme, HO-1: hemoxygenase-1, HSP70: inducible heat shock protein 70.
But does it work?

Keller et al. Radiation Oncology 2013, 8:29
http://www.ro-journal.com/content/8/1/29

RESEARCH

Efficacy of low-dose radiotherapy in painful gonarthrosis: experiences from a retrospective East German bicenter study

Stephanie Keller¹, Klaus Müller², Rolf-Dieter Kortmann², Ulrich Wolf², Guido Hildebrandt³, André Liebmann², Oliver Micke⁴, Gert Flemming⁵ and Dieter Baaske⁶
Table 2 Patient characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>N=</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>316/1037</td>
<td>30.5</td>
</tr>
<tr>
<td>Female</td>
<td>721/1037</td>
<td>69.5</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 60 years</td>
<td>319/1037</td>
<td>30.8</td>
</tr>
<tr>
<td>> 60 years</td>
<td>718/1037</td>
<td>69.2</td>
</tr>
<tr>
<td>Severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal</td>
<td>119/651</td>
<td>18.3</td>
</tr>
<tr>
<td>Moderate</td>
<td>228/651</td>
<td>35.0</td>
</tr>
<tr>
<td>Severe</td>
<td>304/651</td>
<td>46.7</td>
</tr>
<tr>
<td>Duration of pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 year</td>
<td>213/867</td>
<td>24.6</td>
</tr>
<tr>
<td>1 – 3 years</td>
<td>215/867</td>
<td>24.8</td>
</tr>
<tr>
<td>> 3 years</td>
<td>439/867</td>
<td>50.6</td>
</tr>
</tbody>
</table>

Figure 1 Overall response to radiotherapy

Pain, as it was subjectively graded by the patients immediately or up to two months after the completion of a series of radiotherapy.
Figure 4 Response to radiotherapy split by radiological severity of gonarthrosis. Pain, as it was subjectively graded by the patients immediately or up to two months after the completion of a series of radiotherapy. There was a significant difference in radiation-induced pain relief between minimal/ moderate and severe gonarthrosis (p = 0.036).
Figure 6: Response to radiotherapy according to the additional mail survey (106 evaluable questionnaires). Pain after the end of radiotherapy, as it was subjectively graded by the patients in a retrospective mail survey, which was effected in 2010, i.e., two to fourteen years after treatment.

Figure 8: Response to radiotherapy according to the additional mail survey. Duration of clinical improvement after radiotherapy, as it was subjectively reported by the patients in a retrospective mail survey, which was effected in 2010.
Anti-inflammatory Radiation (AIR) Therapy

- In dogs (personal communication, Carla Rohrer-Bley, DVM DAVCR)
 - 2 Gy x 3 fractions on consecutive or every other day
 - 80% response to initial course, >90% if repeat due to lack of improvement 2-3 weeks later
 - 60% at 3 months
 - 40% at 12 months
 - Can be repeated multiple times (>5 courses in some dogs)
 - No significant acute side effects/toxicity
 - Hair color change <5% of the time
AIR in cats

- Osteochondrodysplasia
 - Severe, progressive and debilitating disease causing lameness
 - Marked responses reported to radiation that can last for many years

Journal of Veterinary Internal Medicine

Case Report
J Vet Intern Med 2015

Efficacy and Complications of Palliative Irradiation in Three Scottish Fold Cats with Osteochondrodysplasia

A. Fujiwara-Igarashi, H. Igarashi, D. Hasegawa, and M. Fujita
AIR in cats

- Other arthritic diseases in cats
 - Treated several cats as alternative to chronic NSAID use with good initial results
Acral lick dermatitis

- Aka lick granuloma or canine neurodermatitis
 - Stereotypic behaviour resulting in self-mutilation
 - Reported to have an 80-90% response rate to radiation therapy
A newly designed radiation therapy protocol in combination with prednisolone as treatment for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as monitor tool

Katrin Beckmann1*, Inés Carrera2,3, Frank Steffen1, Lorenzo Golini1, Patrick R Kircher2, Uwe Schneider4,5 and Carla Rohrer Bley4
Granulomatous Meningoencephalitis (GME)

- All dogs had improvements to imaging
- All dogs responded/improved (half fully, half partially)
 - 1 dog only responded for a few weeks
 - 5 other dogs responded for >12 months
- Separate study showed MST of 400 vs 40 days with RT-steroids versus steroids alone
Anecdotal applications for benign disease

- Chronic rhinitis
 - Clinical improvement for 8-12 months with hypofractionated protocols
- Refractory feline stomatitis
 - N=1, marked clinical response in a cat with persistent stomatitis after full-mouth extractions and aggressive medical therapy
- Potential considerations (n=0)
 - Refractory IBD
 - Pancreatitis
 - Polyarthritis
Strontium Plesiotherapy
Strontium Plesiotherapy
Strontium indications

- >95% response rate, 80% non-recurrence rate

- >95% control rate
Strontium indications

- Avian uropygial gland tumors
- Equine eyelid and conjunctival tumors
- Canine/Feline small oral tumors
 - Plasmacytoma, SCC
- Canine/feline eyelid/eartip tumors
 - SCC
- Canine/feline small dermal tumors
Don’t Think Outside The Box
Think Like There Is NO BOX!